A computational upper bound on Jacobsthal’s function
نویسندگان
چکیده
The function h(k) represents the smallest number m such that every sequence of m consecutive integers contains an integer coprime to the first k primes. We give a new computational method for calculating strong upper bounds on h(k).
منابع مشابه
Thanks to Chun
We use an upper bound on Jacobsthal’s function to complete a proof of a known density result. Apart from the bound on Jacobsthal’s function used here, the proof we are completing uses only elementary methods and Dirichlet’s Theorem on the infinitude of primes in arithmetic progressions.
متن کاملA Single Machine Sequencing Problem with Idle Insert: Simulated Annealing and Branch-and-Bound Methods
In this paper, a single machine sequencing problem is considered in order to find the sequence of jobs minimizing the sum of the maximum earliness and tardiness with idle times (n/1/I/ETmax). Due to the time complexity function, this sequencing problem belongs to a class of NP-hard ones. Thus, a special design of a simulated annealing (SA) method is applied to solve such a hard problem. To co...
متن کاملA New Lower Bound for Completion Time Distribution Function of Stochastic PERT Networks
In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of...
متن کاملA New Lower Bound for Completion Time Distribution Function of Stochastic PERT Networks
In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of...
متن کاملTwo Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کامل